hyperelliptic functions - definitie. Wat is hyperelliptic functions
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is hyperelliptic functions - definitie

ALGEBRAIC CURVE THAT IS A RAMIFIED DOUBLE COVER OF THE PROJECTIVE LINE
Hyper-elliptic curve; Hyperelliptic function
  • Fig. 1: The graph of the hyperelliptic curve <math>C : y^2 = f(x)</math> where
<math display="block">f(x) = x^5 - 2x^4 - 7x^3 + 8x^2 + 12x = x (x + 1) (x - 3) (x + 2) (x - 2). </math>

Hyperelliptic curve         
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form
Weierstrass elliptic function         
  • Visualization of the <math>\wp</math>-function with invariants <math>g_2=1+i</math> and <math>g_3=2-3i</math> in which white corresponds to a pole, black to a zero.
CLASS OF MATHEMATICAL FUNCTIONS
Weierstrass elliptic functions; Modular discriminant; Weierstrass P function; ℘; Weierstraß ℘ function; Weierstrass P-function; Weierstrass p; Weierstrass' elliptic function; Weierstrass's elliptic function; Weierp; Weierstrass p function; Weierstraß p function; Weierstrass P; Weierstrass p-function; P-function; P-functions; Weierstrass's elliptic functions
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass.
Even and odd functions         
  • The [[cosine function]] and all of its [[Taylor polynomials]] are even functions. This image shows <math>\cos(x)</math> and its Taylor approximation of degree 4.
MATHEMATICAL FUNCTIONS
Odd function; Odd functions; Even function; Even functions; Even/odd function; Odd and even functions; Even–odd decomposition; Even part of a function; Odd part of a function; Even-odd decomposition
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series.

Wikipedia

Hyperelliptic curve

In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form

where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0).

A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions.